Problem 11

In each of Problems 7 through 14, verify that each given function is a solution of the differential equation.

$$
2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, \quad t>0 ; \quad y_{1}(t)=t^{1 / 2}, \quad y_{2}(t)=t^{-1}
$$

Solution

$$
\begin{aligned}
& 2 t^{2} y_{1}^{\prime \prime}+3 t y_{1}^{\prime}-y_{1} \stackrel{?}{=} 0 \\
& 2 t^{2} \frac{d^{2}}{d t^{2}}\left(t^{1 / 2}\right)+3 t \frac{d}{d t}\left(t^{1 / 2}\right)-t^{1 / 2} \stackrel{?}{=} 0 \\
& 2 t^{2}\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right) t^{-3 / 2}+3 t\left(\frac{1}{2}\right) t^{-1 / 2}-t^{1 / 2} \stackrel{?}{=} 0 \\
&-\frac{1}{2} t^{1 / 2}+\frac{3}{2} t^{1 / 2}-t^{1 / 2} \stackrel{?}{=} 0 \\
& 0=0
\end{aligned}
$$

The first solution is verified.

$$
\begin{aligned}
& 2 t^{2} y_{2}^{\prime \prime}+3 t y_{2}^{\prime}-y_{2} \stackrel{?}{=} 0 \\
& 2 t^{2} \frac{d^{2}}{d t^{2}}\left(t^{-1}\right)+3 t \frac{d}{d t}\left(t^{-1}\right)-t^{-1} \stackrel{?}{=} 0 \\
& 2 t^{2}(-1)(-2) t^{-3}+3 t(-1) t^{-2}-t^{-1} \stackrel{?}{=} 0 \\
& 4 t^{-1}-3 t^{-1}-t^{-1} \stackrel{?}{=} 0 \\
& 0=0
\end{aligned}
$$

The second solution is verified.

